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Formulas are obtained to determine the components of the thermal-diffusivity 
tensor of anisotropic bodies by using the integral temperature and heat flux 
characteristics. 

Methods to determine the thermophysical coefficients, which are based on surface thermal 
probing of fabricated articles without destroying them, are of indubitable interest for the 
possibility of performing thermophysical measurements directly on bodies of arbitrary geom- 
etry [i-4]. 

As a rule, known methods of thermophysical testing assume the use of minimum thermal in- 
formation (for example, a temperature measurement at one point of the surface at a definite 
time [i]) in order not to complicate execution of the experiment. However, this results in 
awkward analytical expressions in computations in nondestructive testing methods, when only 
one side of the body surface is accessible to observation. 

In our opinion, reduction of additional information about the body surface temperature 
in tests and its representation in the form of integral characteristics [5] permit raising 
the confidence in the measurements and simplification of the computational formulas by averag- 
ing the results obtained. 

New methods of nondestructive thermophysical testing of articles on the basis of a gen- 
eral utilization of integral characteristics are elucidated below. 

w Absolute Method of Determining the Thermophysical 
Coefficients of a Semibounded Body 

Let us first examine the problem of determining the thermophysical characteristics of a 
semibounded orthotropic body whose thermal-diffusivity tensor components are considered con- 

stant. Let us assume that the principal axes of the tensor ~ az are known. Let us 

0 0 a 

direct the ox, oy, and oz coordinate axes along the principal directions by directing ox 
and oz along the surface and oy into the body by considering the heating to be in the y = 0 
plane. The heat-conduction equation in this case will have the form 

a u  azu o~u o2u 
- - - a l  - - - - a 2  - - - - a 3  - -  = O, t >  O, ( 1 )  

at ax 2 a~]~ az 2 

- - o o < x ,  z < o o ,  y > O ,  

where U = U(t, x, y, z) is the body temperature. 

Let us consider the initial temperature constant and equal to zero, the heat flux den- 
sity q going into the body through the surface y = 0 to be a symmetric function relative to 
the ox axis and independent of the coordinate z, i.e., 

--~z OU-~-I =q( t ,  x), (2) Ult=o = O, 
Oy l y=O 

where %: = alc, %= = a2c, %3 = a3c are the thermal-conductivity coefficients along the ox, oy, 
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and oz axes, respectively, and c is the volume specific heat. Then ~=U/Sz = 

y, z) -= U(t, x, y). 

Let us call integrals of the form 

(p, s, y) = f . [ U  (t, x, y) exp(-- pt) cossxdldx, o, 
o o 

q* (p, s) = .~.~q (t, x)exp(--  pl) cos sxdtdx 
o o 

=0 and U(t, x, 

(3) 

the integral characteristics of the body temperature and the heat flux. 

Values of these characteristics on the body surface y = 0 are interrelated by the re- 
lationship 

$*(p,  s) O ~ =  ~ 
d*(p, s, o)= o=V  - (4) 

An expression for the coefficient of thermal diffusivity at along the body surface follows 
from (4) : 

a I 

P2 
q* (p~, s) )2 $, (pv s ) ) o_ 

(D*(p~,s ,  O).--P~( U*(p2, s, O) 

o 7p7, s, 5) ( (p'' O~-p~, s, ~3))2] 

(5) 

as does the thermal activity 0a = X=/~ in the bulk of the body: 

$* (Pz, s) $* (P2, s) 
02 = U* (p~, s, O) I /P1+ al s2 = U* (P2, s, O) I /p=+ a,s 2 

These equalities are valid for all p, s if at and e= are constants, i.e., 
can be considered the necessary condition for ax and e= to be constant. 

The component a3 is determined analogously if the heating is along the ox axis. 

(6) 

(5) and (6) 

w Relative Method of Determining the Thermophysical Coefficient of a 
Semibounded Body 

Under the assumptions and notation from Sec. i, a standard body with the known thermo- 
physical characteristics a s and X s in thermal contact with the article under investigation 
(Fig. i) is used in addition.t 

Let a plane heater, located between the bodies, liberate a total heat flux of density 
qt(t, x). Let us assume the heater thickness to be negligibly small and its specific heat 
to be much less than the specific heats of the specimen and the standard, i.e., 

(t, x) = q (t, ~ - -  ~ (t, x), q (t, x) > O, qs (t, ~ < O, 

us (t, x, o ) =  u (t, x, o). 

The equality of the fluxes and temperatures of the specimen and standard surfaces yields 
equality of their integral characteristics 

q~* (p, s) = $* (p, s) - -  q* (p, s), 

O: (p, s, o ) =  O* (p, s, o). 
(7) 

tBecause ~au/~z 2 = O, the coefficients a3,  ~s will not be encountered later and it is impos- 
sible to determine them for such a heating scheme. 

1074 



Heater l ff Specimen 

Fig. i. Heating diagram for the system 
under investigation. 

- $* (p, s) 

Solving (7) and (8) jointly, we obtain 

u* (p, s, o) = 

~*(p, s) , Os= ~'~ 
0 2 | / p  + ais 2 V ~  s " 

$* (p, s) 
Os 1/p + ass2 + O~ l i p  + a~s 

(8) 

(9) 

Let us use two equations to find al  and 02: 

flY*(Pi, s, 0 ) =  q~ (p*' s) _ _ _ _  , i = 1 ,  2. 
os V p , +  a~s~+ o~ V ~ +  a~s~ 

from which 

where 

A1 A2 (11) 
02 = V P , +  a~ s~ VP~+ a,s 2 ' 

(p~, s) 
U* (pi, s, O) 

0s~ p i+asS  2, i =  1, 2. 

w Determination of the Thermophysical Characteristics of an 
Anisotropic Bounded Body 

Let us consider the general case of an anisotropic body with surface F occupying a fi- 
nite domain V of three-dimensional space. Let us assume V to be given in a fixed Cartesian 
coordinate system. To simplify the writing let xl, x2, and x3 denote the coordinate axes. 

Let us assume that the temperature g(t, x), x = (xl, x2, x3) of the surface F and the 
heat flux q(t, x) through this surface are measured simultaneously in the same thermal pro- 
cess. The initial temperature ~(x) and the intensity of the internal heat sources f(t, x), 
x6V are also known. Let us consider the volume specific heat c and the heat-conduction 
tensor to be constant. Then the process of heat propagation in the body is described by the 
problem 

OU (t, x) z OzU(t, x) 1 f (t, x), ajh = at, j (12) 
Ot ~ ajh -- ' i,k=~ c)xjOxu c 

t > O ,  xCV, x = ( x  1, x2, x3), 

U(O, x ) =  +(x), xCV, (13) 
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U(t, x ) = g ( t ,  x), t > O ,  xCr ,  (14) 

Za aJk OU(t, x) cos(n, x j ) : : - - - - 1  q(/,x),  (15) 
i,k=l Oxk c 

t > O ,  xEr ,  

where n = {cos(n, x~), cos(n, x2), cos(n, xs)} is the unit vector of the external normal n 
to the surface r erected at the point x. 

It is clear that it is impossible to consider the temperature g(t, x) and the heat flux 
q(t, x) independent in the problem (12)-(15), since it is sufficient to give one of the con- 
ditions, (14) or (15), in addition to the initial condition (13) for unique solvability of 
the "direct" problem. 

The relationship between the surface temperature g(t, x) and the flux q(t, x) penetrat- 
ing through this surface, as well as the thermal-diffusivity tensor, the initial function 
~(x), and the source function f(t, x), is set up by using integral characteristics of a spe- 
cial kind. This relationship is the following. 

If the matrix (a~k)~ is a constant, symmetric, and positive definite and g(t, x), 
q(t, x), (xEr), f(t, x),,~(x), (xEV), t > 0 are bounded, then for all real pj, j = i, 2, 3, 
which do not vanish simultaneously,, the equality 

3 

P (P' aJh) --~ X a]~Pk ,I exp (-- px) g* (P4, x) cos (n, x j) dF -- 
i , k = l  r 

+ 1 S exp (-- px) q* (p,x) dr+ [ exp (-- px) "/, 
c r 

(+ ) • • [*(p, x)+cp(x) d x =  O, px-= PiXi, p~:= asnpjpt~, (16) 
i = 1  ] , k = l  

holds, where the asterisk denotes the Laplace transform of the appropriate function, for in- 
s t ance ,  

g* (P4, x ) =  .f exp (--p4t)g(t, x)dr, x = (x l, Q, x3). 
0 

The equality (16) can be considered as the necessary condition which the matrix (ajk)~ 
of the coordinates of the thermal-diffuslvlty tensor must satisfy if it is known a priori 
that the tensor belongs to a definite class: it is symmetrlc, i.e.,the Onsagerrelationships 

3 

are satisfied, ajk = akj , and the matrix (ajk)~ is positive definite, i.e., Z ajkpJpu>O 
] ,k=l  

3 

for all real pj such that Z P~>0" The condition of positive definiteness is perfectly 
]=I 

natural here since it indicates that the heat-conduction equation (12) is parabolic. 

The e q u a l i t y  (16) can be used to ob t a in  an a lgor i thm to de te rmine  the c o e f f i c i e n t s  a j k .  
Let us introduce the functional 

3 

s = .f p(')  (p, dp, p = (p., p.), n . =  { < oo s , 
R a i = 1  

where p(p) is an arbitrary positive finite function such that O(P) ~ ]Pl ~, ~ > 0, 
neighborhood of zero. 

If (16) is satisfied, then J(ajk) reaches its minimum value and hence 

aJ (ajh) 
~ = 0 ,  ], k =  1, 2, 3, a ~ = a k i .  

Oa ~k 

in the 

(17) 
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The solution of the nonlinear system (17) should be sought so that the matrix (ajk)~ 
would be positive definite. 

w Example of an Approximate Calculation of the Integral 
Characteristics fi(p, s, 0) and ~(p, s) from (3) 

Let us consider the problem of determining the integral characteristics of the surface 
temperature and the heat flux density in application to the problem in Sec. 2. Let us 
examine one important case when the heat flux supplied to the body through a surface strip 
of width 21 is constant within it: 

qt = const, Ixl ~ l, q~ ~ O, 
qt (t, x) = O, Ixl > 1. 

In this case the integral characteristic of the heat flux density is written analytic- 
al ly : 

* (p, s) = qt sin sl 
;t . , ( 1 8 )  

ps 

and then (9) becomes 

U* (p, s, O) = q t sin sl 
ps (OsVp + 5s ~ + O~Vp + als ~) 

For  y = 0 t h e  i n t e g r a l  U*(p,  s ,  0) f rom (3) can  be  r e p r e s e n t e d  as  

( 1 9 )  

U* (p, s, 0) = j" U* (p, x, 0) cos sxdx, (20) 
0 

where 

U*(p, x, O) = [ U(t,  x, 0) exp ( - - P 0  dt (21) 
b 

is the Laplace transform of the function U(t, x, 0). 

Then using the inversion formula of the Fourier integral transform, we find the integral 
(21) from (19) and (20): 

U*(p, x, O) -- 2qt C s inr /cos  rx d__r_r (22)  
zip ~o Os V-p + asr z + Oz l f  p + alrZ r 

Furthermore, the value of U*(p, s, 0) is calculated approximately. 

The integral (21) was initially evaluated for a number of values of x 

U* (p, x, O) ~ - -  bkU , x, . 
P k=l 

The coefficients were selected according to a table [6]. It turns out 
n = 5 for all xi, 0 J x i < =, in the ranges 

0 . 1 ~  al ~ 5 ;  0.1 02 P12 
s O  - ~ 5 ;  1 ~ . .  ~ 1 0 ,  

as  as  

the error in evaluating the integral did not exceed 0.02%. 

Then we find the integral (20) approximately 

[5] that for 
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TABLE I 

02 s l = ~ ;  o ,_< a,  <~. o , ,< -~- -<5;  ,~< pl, -<,o  
, ~ a , s  ' o S ~ aS ~ 2 

xi  

l 
0,5 1,5 

c~ 

l 
O, 5756 O, 6973 --1,3050 --0,0869 

1 d* ( p ,  s, o )  ~ ~. c,u* p ,  . , . 
S i=1 S 

Substituting (19) and (22) into (23), we obtain 

(23) 

sin sl 

o. Vp--+-~,, ~ + o,. Vp + al~ 

2 m ~ SiN r l  cos r Xi 
j s dr 

i=,  o Os ' /  O -L  a ' =  -L  Oz ] / - ~ - i  - -  s" - -  - - t "  , r 
(24) 

The parameter s and the coefficients c i are found on an ODRA-1204 computer by minimiz- 
ing the difference between the left and right sides of (24) in the selected range of al/as, 
0a/0s, and p~2/as. 

The results of calculations for m = 4, reduced to dimensionless form, are presented in 
Table i. 

The error we obtained in calculating aa and e2 by means of (i0) and (ii), using the 
tabulated quadrature coefficients b k [6] and the quadrature coefficients ci, will not ex- 
ceed 1%. 
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